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Abstract
Increasing tree diversity is considered a key management option to adapt forests to 
climate change. However, the effect of species diversity on a forest's ability to cope 
with extreme drought remains elusive. In this study, we assessed drought tolerance 
(xylem vulnerability to cavitation) and water stress (water potential), and combined 
them into a metric of drought–mortality risk (hydraulic safety margin) during extreme 
2021 or 2022 summer droughts in five European tree diversity experiments encom-
passing different biomes. Overall, we found that drought–mortality risk was primarily 
driven by species identity (56.7% of the total variability), while tree diversity had a 
much lower effect (8% of the total variability). This result remained valid at the local 
scale (i.e within experiment) and across the studied European biomes. Tree diversity 
effect on drought–mortality risk was mediated by changes in water stress intensity, 
not by changes in xylem vulnerability to cavitation. Significant diversity effects were 
observed in all experiments, but those effects often varied from positive to nega-
tive across mixtures for a given species. Indeed, we found that the composition of 
the mixtures (i.e., the identities of the species mixed), but not the species richness 
of the mixture per se, is a driver of tree drought–mortality risk. This calls for a better 
understanding of the underlying mechanisms before tree diversity can be considered 
an operational adaption tool to extreme drought. Forest diversification should be con-
sidered jointly with management strategies focussed on favouring drought- tolerant 
species.
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1  |  INTRODUC TION

Forest ecosystems around the world are experiencing more fre-
quent and intense droughts as a result of climate change (Trenberth 
et al., 2014), which is associated with increased tree mortality (Allen 
et al., 2010; Hammond et al., 2022) and increasingly affects forest 
functions and services (Anderegg et al., 2013; Hammond et al., 2022). 
Increasing tree species diversity is advocated as an important manage-
ment option to adapt forests to climate change (Messier et al., 2022). 
Indeed, more diverse forests and plantations are thought to better 
cope with a number of abiotic and biotic disturbances while exhibiting 
comparable or higher levels of crucial functions and services, such as 
productivity (Depauw et al., 2023; Jactel et al., 2017). For this reason, 
promoting species diversity in forests is proposed as a ‘no- regret ap-
proach’ for climate- smart forestry, which can be immediately imple-
mented at large scale (Messier et al., 2022; Muys & Messier, 2023).

However, the effects of tree species diversity on drought resis-
tance remain elusive (Grossiord, 2020). In particular, most of previ-
ous studies measured indirect proxies of drought resistance, such as 
growth increments, wood carbon isotope composition, temporal dy-
namics of Normalized Difference Vegetation Index (NDVI) or, in some 
rare cases, sapflow- derived tree transpiration (e.g., Grossiord, 2020; 
Grossiord et al., 2014; Haberstroh & Werner, 2022; Liu et al., 2022; 
Pardos et al., 2021; Schnabel et al., 2022). Because these prox-
ies are related to physiological processes that are down- regulated 
early during the onset of drought, they do not inform about the risk 
of tree mortality under extreme drought (Torres- Ruiz et al., 2024). 
Consequently, whether stand species diversity can mitigate the risk 
of drought- induced tree mortality is largely unknown (but see Hajek 
et al., 2022; Shovon et al., 2024). To this day, this knowledge gap has 
blurred the significance of tree diversity as a crucial management 
leverage for climate- smart forestry, in contrast to other management 
strategies focussed on favouring the introduction or regeneration of 
drought- resistant species. Indeed, comparing intrinsic species resis-
tance to the magnitude of diversity effects on tree drought resistance 
requires experimental designs where these two effects can be quan-
tified and tested, which is often impractical in observational studies 
because of confounding factors (Baeten et al., 2013). Moreover, 
measuring drought–mortality risk along diversity gradients requires 
measuring both the water stress experienced by tree species and the 
vulnerability of these tree species to water stress, as both are possibly 
affected by species diversity.

If species interactions affect the amount of water available for 
trees in mixtures during periods of water deficit, tree diversity could 
influence tree water stress (commonly measured using water po-
tential; Choat et al., 2018). A variety of ecological mechanisms have 
been proposed to explain tree diversity effects on resource- use and 

forest functioning (Barry et al., 2019; Nadrowski et al., 2010), which 
can be applied to water use and water stress (Grossiord, 2020). 
Resource partitioning effects can occur if tree species use water dif-
ferently in space, time and magnitude, thereby alleviating competi-
tion for water in mixtures, for example if root systems explore soil at 
different depths. Facilitation effects happen when one species has a 
positive effect on the functioning of neighbouring species. Typical 
examples include the effect of tree diversity on forest microcli-
mate buffering (Zhang et al., 2022), which can alleviate atmospheric 
drought in understorey tree species (Ma et al., 2023). Finally, selec-
tion effects account for increased probability of including drought- 
resistant species in diverse forests. However, these beneficial effects 
may be overridden by increased competition for soil water in case 
of severe drought (Haberstroh & Werner, 2022). Moreover, if tree 
diversity has a positive effect on growth and crown development in 
favourable periods, as is frequently observed (Guillemot et al., 2020; 
Williams et al., 2017), it may worsen the consequences of severe 
droughts by increasing the mismatch between water demand (driven 
by leaf area and therefore, tree size) and availability (i.e., ‘structural 
overshoot’ sensu Jump et al., 2017).

Tree drought vulnerability is commonly quantified using the xylem 
resistance to cavitation, typically captured by the water potential 
causing 50% of hydraulic conductivity loss in the xylem (P50, Anderegg 
et al., 2016; Choat et al., 2018; Martin- Stpaul et al., 2017). Tree di-
versity could affect P50, because diversity can substantially affect the 
growing conditions and therefore xylem features through anatomical 
plasticity. Although current evidence suggests that traits related to 
drought vulnerability are less plastic than traits related to water acqui-
sition (Fuchs et al., 2021; Lamy et al., 2014; Lauriks et al., 2021), P50 
was occasionally shown to respond to changes in light exposure or 
long- term water deficit (Feng et al., 2023; Lemaire et al., 2021).

Both maximal water stress and vulnerability to water stress are 
integrated in the hydraulic safety margin (HSM), a direct measure of 
the risk of hydraulic failure under drought (Choat et al., 2012; Martin- 
Stpaul et al., 2017; Sanchez- Martinez et al., 2023). HSM has been 
shown to be a good predictor of drought- induced mortality across 
several tree species (Anderegg et al., 2016; Nolan et al., 2021). It is 
defined as the difference between the maximum water stress ex-
perienced by a tree (i.e., the minimum measured water potential in 
the xylem) and its drought vulnerability (measured using P50; Choat 
et al., 2012). To the best of our knowledge, the effect of species di-
versity on the two components determining HSM, and therefore 
drought–mortality risk, was never quantified. However, we note that 
HSM estimated using P50 averaged at the species level and hydrology- 
derived water stress model (i.e., without any information about spe-
cies diversity) can successfully predict tree mortality at large scale 
(Anderegg et al., 2015; Tai et al., 2019). This suggests that the effect 

K E Y W O R D S
forest adaptation, forest management, hydraulic traits, species interactions, species richness, 
tree diversity, water stress, xylem embolism
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of tree species diversity on drought–mortality risk is smaller than the 
effect of intrinsic species resistance to drought.

Here, we build upon TreedivNet, a global network of field tree 
experiments specifically designed to quantify and test species di-
versity effects (Verheyen et al., 2016) to explore whether stand 
species diversity can mitigate the risk of drought- induced tree 
mortality. We measured drought–mortality risk (i.e., HSM) during 
the extreme 2021 or 2022 summer droughts in five European ex-
periments, encompassing Mediterranean, continental and oceanic 
climate. We specifically tested two hypotheses: (1) Species diversity 
alters both determinants of drought–mortality risk, that is the level 
of tree water stress and the vulnerability of the tree vascular system 
to drought (i.e., P50); (2) the risk of drought- induced tree mortality 
depends more on intrinsic species resistance to drought than on 
stand species diversity.

2  |  MATERIAL S AND METHODS

2.1  |  Experimental design

This study was conducted at five tree diversity experiments located 
in contrasting climate and soil conditions throughout western and 
southern Europe (Figure 1) as part of the TreeDivNet network 
(Verheyen et al., 2016). All experiments include tree species grown 
in both monoculture and mixture in a replicated randomised de-
sign that allows for the effect of tree diversity to be tested. The 
studied experiments included ORPHEE in France, IDENT- Freiburg 
in Germany, FORBIO- Gedinne in Belgium, IDENT- Macomer in Italy 
and B- Tree in Austria (Table 1). The tree species grown in the ex-
periments are adapted to local climate and soil conditions.

Tree planting density ranged from 2500 (ORPHEE) to 62,500 
(IDENT- Macomer) trees per hectare. A comprehensive description 
of the experiments can be found in Supporting information S1. In 
each experiment, we selected plots along a species richness gradient 
(1–6 species mixtures). We aimed at sampling mixtures exhibiting 
contrasting functional diversity (i.e., species mixtures with com-
parable growth rates and similar leaf habits versus mixtures with 
contrasted growth rates and containing both broadleaf and conifer 
species). All the studied species were sampled in both mixtures and 
monocultures. A total of 21 different species, 43 different species 
compositions (21 monoculture and 22 mixtures) and 116 ‘species × 
species richness’ levels were studied (all of them were measured for 
water stress, but only a subset of species was measured for drought 
vulnerability, see dedicated sections). Tree ages at the time of sam-
pling varied among experiments, ranging from 8 (IDENT- Macomer) 
to	14 years	(ORPHEE).	Sampled	trees	had	dominant	or	codominant	
status, with only living neighbours. Sampled trees of a given plot and 
species had comparable sizes. Average tree height varied largely be-
tween	species	and	experiments,	ranging	from	0.7 m	(Phillyrea latifolia 
at	IDENT-	Macomer)	to	11.8 m	(Pinus pinaster at ORPHEE and Larix 
x eurolepsis at FORBIO- Gedinne, Tables S2). Trees were sampled in 

the inner part of the plots, and we avoided sampling trees grown in 
the same vicinity.

2.2  |  Physiological traits

2.2.1  |  Xylem	vulnerability	to	drought

A subset of species and experiments were measured for xylem vul-
nerability to drought. Long- vessel species (i.e., Quercus species in our 
dataset) were not measured because of the documented risk of arte-
fact measurements associated with Cavitron for these species (Sergent 
et al., 2020; Torres- Ruiz et al., 2014, 2015). The IDENT- Macomer ex-
periment were not measured for P50 due to logistical constraints. In 
total, 11 species were measured for xylem vulnerability to cavitation 
across diversity gradients. The sample collection took place in 2022, 
except for Betula pendula and Pinus pinaster in the ORPHEE experi-
ment that were measured in 2020. Measurements were conducted 
in the morning, in May and June 2022, that is after the growing sea-
son to ensure mature xylem structures, but before the severe drought 
summer period to avoid native embolism. Five trees were sampled 
per species in all studied plots, and two blocks were sampled in each 
experiment (totalling n = 10	measurements	 for	each	 species	 in	each	
diversity	 level).	We	sampled	fully	grown	branches	of	100	to	120 cm	
length located at the top of the trees, exposed to sunlight and aged 2 to 
3 years.	Vulnerability	to	cavitation	was	measured	using	the	‘Cavitron’	
flow- centrifuge method following standard protocols for short- vessel 
coniferous and diffuse- porous species (Cochard et al., 2005). Sampled 
branches immediately recut under water in the field. Lateral branches 
and leaves were immediately cut underwater, wrapped in humid 
paper towels and sealed in plastic to avoid drying during shipment to 
the laboratory (Torres- Ruiz et al., 2015). Measurements were carried 
out	within	2 weeks	after	 sampling	 (Platform	 INRAE	PHENOBOIS	at	
UMR BIOGECO Bordeaux and UMR PIAF Clermont Ferrand). In the 
laboratory, samples were stored between 4 and 6°C. A few minutes 
before the Cavitron measurement, samples were re- cut underwater 
to	28 cm	length.	The	principle	of	the	cavitron	is	to	assess	the	loss	of	
hydraulic conductance of the branch segment while progressively 
increasing the xylem tension (equivalent water potential) until most 
hydraulic conductance loss has been reached. The different water po-
tential steps are reached through the centrifugal force, which gener-
ates an increasing negative xylem pressure. Finally, we expressed the 
percent loss of hydraulic conductance (PLC) as a function of xylem 
pressure (ψ) to build the vulnerability curves using a sigmoidal func-
tion (Pammenter & Van Der Willigen, 1998), as follows:

where P50 is the pressure causing 50% loss of conductivity and sl the 
slope value at this point. A total of 628 xylem vulnerability curves were 
analysed in this study.

PLC =
1

1 + esl∕25∗(Ψ−P50)
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F I G U R E  1 Location	of	the	five	studied	experiments	and	drought	intensity	at	the	time	of	water	stress	measurement.	Drought	intensity	
is characterised using simulation of soil water potential (ψsoil) from the SurEau model (Ruffault et al., 2022; Supporting information S2). For 
each experiment, the upper plot shows the annual minimum of ψsoil and the bottom plot shows the daily dynamics of ψsoil during the year 
of sampling. Red colour indicates year and date of sampling. The biogeographical region layer is based on Cervellini et al. (2020). Map lines 
delineate study areas and do not necessarily depict accepted national boundaries.
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2.2.2  | Water	stress

We aimed at measuring water stress during extreme drought condi-
tions in the different experiments. To achieve this, we conducted 
measurements during exceptionally dry years in the different ex-
periments: in summer 2021 for the IDENT- Macomer experiment, 
summer 2022 otherwise. In addition, we aimed at sampling each 
experiment at the seasonal peak of drought intensity. The date 
of	sampling	was	planned	1	or	2 days	ahead	of	the	measurements,	
based on weather forecasts, aiming to conduct the sampling at the 
end of a long dry period and just before the beginning of autumn 
rainfall events. The extreme drought intensity of the year and day 
of measurement was subsequently confirmed using simulations of 
soil water potential from the trait- based plant hydraulics model 
SurEau (Ruffault et al., 2022; Figure 1; Supporting information S2). 
In each experiment, measurements were conducted within two 
to three consecutive sunny days to ensure comparable weather 
conditions.

Leaves or shoots from the tree canopy were sampled using pole 
pruners. Ψpd	was	measured	in	a	2 h	slot	before	sunrise	and	Ψmd was 
measured	in	a	2 h	slot	around	solar	midday	on	the	same	trees.	Samples	
collected were south- oriented and on top of the tree crown. Four 
trees were sampled for both Ψpd and Ψmd per species and plot, and 
two blocks were sampled (totalling n = 8	measurements	for	each	spe-
cies in each diversity level) in all experiments except for the IDENT- 
Macomer, where three trees were sampled for Ψpd per species in all 
studied plots (i.e., no Ψmd measurements were conducted), and three 
blocks were sampled (totalling n = 9	measurements	for	each	species	
in each diversity level). Samples were immediately sealed in plas-
tic Ziplock bags after blowing in it to saturate it with humidity. The 
samples were then placed in a portable cooler (avoiding contact with 
ice) in the dark before being measured with the Scholander pressure 
bomb directly in the field (i.e., less than half an hour after sampling, 

Rodriguez- Dominguez et al., 2022). A total of 621 measurements of 
Ψpd and 468 of Ψmd were analysed in this study.

2.2.3  |  Hydraulic	safety	margins

Xylem vulnerability to drought and water stress measurements were 
used to calculate hydraulic safety margins (HSM). Average P50 val-
ues of species that were not measured in this study were obtained 
from the literature (Martin- StPaul et al., 2017). To ensure consistency 
among species, P50 data obtained in this study were averaged at the 
species level to calculate HSM. This was possible because we did not 
find any overall significant diversity effect on P50 (Figure 2b). In addi-
tion, when tested at the species level, no species exhibited a signifi-
cant effect of species richness (Figure 2a). Yet, one species out of 21 
showed a significant mixture effect (i.e., monoculture versus mixture, 
see next section) on P50. However, the amplitude of the effect was 
small. Therefore, we confirmed on the 11 species measured for both 
P50 and water stress that averaging P50 at species level did not affect 
our estimates of HSM across species and diversity gradients (R2 = 1;	
Supporting information S3).

Two different definitions of HSM were used in this study: Ψmd 
– P50 (HSMmd, corresponding to the original definition of Choat 
et al., 2012) and Ψpd – P50 (HSMpd). Although using Ψmd to calcu-
late HSM is the most commonly used definition, we argue that Ψpd 
is a more reliable measurement of the aggregated effects of local 
conditions (in our case neighbouring tree diversity) on water stress 
over time. Indeed, Ψpd is related to the water content of the soil 
volume explored by tree roots, which integrates tree water use 
over the whole drought sequence. By contrast, Ψmd also integrates 
the effects of the fluctuating environmental midday conditions. 
Consequently, Ψmd measurement is more challenging because val-
ues can strongly vary from day to day, depending on weather, but 

TA B L E  1 Description	of	the	tree	diversity	experiments.

Experiment 
name B- TREE FORBIO Gedinne IDENT Freiburg ORPHEE IDENT Macomer

GPS position 48°19′3.62′′ N; 
16°4′0.81″ E

49°59′N; 4°59′ E 48°01′10′′ N; 
7°49′37″ E

44°44′23.27′′ N; 
0°47′46.68′′ W

40°14′N; 8°42′ E

Altitude 200 m 367–426 m 278 m 60 m 615 m

Plot size variable 42 m × 42 m 3.6 m × 3.6 m 20 m × 20 m 3.2 m × 3.2 m

Plot density 9166 trees/ha 4444 trees/ha 37,692 trees/ha 2500 trees/ha 62,500 trees/ha

Planting date 2013 2010 2013 2008 2014

Studied sp. 
Richness levels

1, 2, 4 1, 2, 4 1, 2, 6 1, 2, 3 1, 2

Studied species 
pool

Acer platanoides, 
Carpinus betulus, 
Quercus robur, Tilia 
cordata

Acer pseudoplatanus, 
Fagus sylvatica, Larix x 
eurolepis, Pseudotsuga 
menziesii, Quercus 
petraea

Acer platanoides, Acer 
saccharum, Betula 
papyrifera, Betula 
pendula, Quercus robur, 
Quercus rubra

Betula pendula,Quercus 
ilex, Pinus pinaster

Acer monspessulanum, 
Arbutus unedo, 
Fraxinus ornus, 
Phillyrea latifolia, 
Pinus halepensis, Pinus 
pinaster, Quercus 
pubescens

Note: Table of the Material and methods section synthetising experimental sites global informations.
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also from leaf to leaf, as, for example radiation interception or wind 
exposure can vary, even among sunlit leaves of a given tree, and 
affect Ψmd (Martínez- Vilalta et al., 2021). However, Ψpd and Ψmd 
and, therefore, HSMpd and HSMmd rank comparably under drought, 
as tree water loss is low (due to low stomatal conductance) under 
these stressful conditions, which was confirmed in our dataset (the 
R2 of the linear relationship between HSMmd and HSMpd was 0.91, 
Supporting information S4). In the following, when the generic term 
‘HSM’ only to refer to the general concept of drought- mortality risk, 
and used HSMpd and HSMmd otherwise.

2.2.4  |  Tree	species	diversity

We explored the effects of three facets of tree diversity on xylem 
vulnerability to drought (P50), water stress (ψ) and drought–mortality 
risk (HSM): (1) the ‘mixture effect’, a binary variable that contrasts a 
species grown in monoculture from the same species grown in any 
type of mixture. It allows testing the overall effect of mixing species, 
regardless of the mixture's characteristics. (2) The ‘species richness 
effect’, where species richness is included in models as a categori-
cal variable with six levels, because species richness in our dataset 
ranges from 1 to 6. It allows testing the effect of species richness, 
regardless of the identities of the species in the mixtures. (3) The 
‘species composition effect’, where species composition is included 
in models as a categorical variable with 43 levels. It allows testing 
the effect of species composition, that is how the identities of the 
species in mixture drive diversity effects.

For HSMpd, we additionally quantified diversity effect in each mix-
ture composition, as follows:

where s is the species and c is the mixture composition.
We then evaluated the maximum diversity effect exhibited by 

each species in each experiment.

2.3  |  Statistical analyses

We used linear models (ANOVA type II, ‘car’ R package, Fox 
et al., 2012) to quantify the variance explained by species identity and 
tree diversity in our P50, water stress and HSM dataset. The effects 
of the three facets of diversity (mixture effect, species richness ef-
fect and composition effect, see the ‘Tree diversity’ section) were ex-
plored in separate models to avoid collinearity problems. Specifically, 
the models tested were as follows:

where Y is the dependent variable (P50, Ψ or HSM), ID is the species 
identity, DIV is the tree diversity variable, ε is the error term. Indices 

are as follows: t is tree, s is species and d is diversity level (depends 
on the DIV variable tested, i.e., mixture effect, species richness ef-
fect and composition effect, see the ‘Tree diversity’ section). For all 
dependent variables, model residuals were visually checked for nor-
mality (Supporting information S5). Because all studied species but, 
two in P50 and consequently HSM dataset, and four in Ψ dataset, 
were grown in only one experiment, the species and experiment 
effects were confounded. Therefore, we did not include the exper-
iment as an independent variable in the models, but rather consid-
ered species grown in two experiments as distinct species in the 
analyses. We tested the significance of the diversity effect in each 
species using one- way ANOVA and Tukey's post hoc tests (‘car’ R 
package, Fox et al., 2012).

In addition, we aimed at evaluating how neighbouring basal area 
and tree size mediate tree diversity effects on P50, water stress and 
HSM (Fichtner et al., 2020; Prendin et al., 2018). Therefore, we per-
formed models including these variables, as follows:

where Y is the dependent variable (P50, Ψ, or HSM), ID is the species 
identity, DIV is the tree diversity variable, BA is the average neighbour-
ing basal area of a species in a plot (m2 ha−1), SIZE is the height of the 
trees of a species in a plot (m), ε is the error term. Indices are as follows: 
t is tree, p is plot, s is species and d is diversity level (depends on the 
DIV variable tested, that is mixture effect, species richness effect and 
composition effect, see the ‘Tree diversity’ section).

Although our data set exhibits a nested structure, with trees 
nested within plots, plots nested within blocks and blocks nested 
with experiments, random effect accounting for this structure yielded 
singular matrix estimates. It was only possible to include an ‘experi-
ment’ random effect in models when including diversity metric either 
as ‘mixture’ or ‘species richness’. For this reason, we explored our 
data sets using linear models. Yet, we aimed at quantifying the ef-
fects of tree diversity and species identity on drought risk at both 
European scale (i.e., considering variation among and within experi-
ments) and local scale (i.e., only considering within- experiment varia-
tion). To this aim, we performed the models described in Equation 2 
and Equation 3 using raw data, and data standardized within experi-
ment (i.e., each continuous variable was scaled (X −X

�X

) per experiment). 
When this comparison was possible, we verified that analyses con-
ducted using ANOVAs with the standardized dataset yielded results 
qualitatively similar to a mixed model with a random ‘experiment’ 
effect on raw data (Supporting information S5).

Following (Stoffel et al., 2021), we considered that the propor-
tion of variance (i.e., partial R2) that is assigned to an explanatory vari-
able (i.e., diversity or species identity) is the sum of the proportion of 
variance that is explained by main effect, together with the variance 
jointly explained with its interaction to the other main effect (Option 
C in Stoffel et al., 2021). A significant p- value threshold was set at .05. 
All analyses and figures were produced using the R software (v. 4.3.1, 
R core team, 2021).

(1)

“Diversity effect on HSM”s,c =
(

HSMpdmixtures,c
− HSMpdmonocultures

)

(2)Yt,s,d = IDs + DIVd + IDs × DIVd + �t,s,d

(3)Yt,p,s,d = IDs + DIVd + IDs × DIVd + BAp,s + SIZEp,s + �t,p,s,d
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3  |  RESULTS

3.1  |  Tree species diversity effect on xylem 
vulnerability to cavitation

There was no evidence of overall effect of mixture, species richness 
or species composition on P50 (Figure 2). This result remains valid 
whether using raw data or standardized data within experiment. In 
addition, we did not report a significant effect of neighbouring basal 
area and tree size on P50 (Supporting information S7). When tested 
at species level, diversity effect was found to be significant only in 
Pseudotsuga menziesii (FORBIO- Gedinne experiment), in which we 
identified a significant mixture effect (p = .032,	R2 = .1)	on	P50. Post hoc 
tests performed for Pseudotsuga menziesii showed that vulnerability to 

cavitation was lower when grown in association with Larix x eurolepsis 
(Δ0.33 MPa,	p = .042,	Supporting information S8). Because we did not 
find any significant experiment effect in the two species found in two 
different experiments (Betula pendula and Acer platanoides, p > .29),	
data were pooled at the species level for those two species for visuali-
zation (Figure 2) and HSM calculation.

3.2  |  Tree species diversity effects on water 
stress and drought–mortality risk

Water stress (leaf water potential) and drought–mortality risk (HSM) 
measured in tree species grown in mixtures were well- predicted by 
measurements in the same species grown in monocultures, following 

F I G U R E  2 (a)	Effect	of	tree	species	
diversity on xylem vulnerability to 
cavitation (P50). Points are observed 
mean, and error bars are standard errors. 
We did not report any significant effect 
of species richness on P50 when tested at 
species level (p > .07).	(b)	Partitioning	of	
variance in the P50 dataset. Bars indicate 
the proportion of variance (partial R2) 
explained by the variables. The effects of 
three facets of diversity (mixture effect, 
species richness effect and composition 
effect) were explored in separate models 
to avoid collinearity problems (see main 
text). n.s. means that the variable had no 
significant effect in Equation 2.
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8 of 15  |     DECARSIN et al.

a linear relationship. This result remains valid for both ψpd (R2 = .93,	
p < .001)	 and	ψmd (R2 = .89,	p < .001),	HSMpd (R2 = .76,	p < .001)	 and	
HSMmd (R2 = .74,	p < .001)	(Figure 3 and Supporting information S9). 
Because results were qualitatively similar for predawn and midday 
measurements but predawn measurements are available for more 
species, only predawn measurement are presented in the following 
(see Supporting information S7–S9 for midday results). The slopes of 
the monoculture versus mixture relationships were not significantly 
different from one and the intercept slope was not significantly dif-
ferent from zero, which indicate no overall effect of mixture on water 
potential (i.e., water stress) and HSM. This was confirmed by vari-
ance partitioning (Equation 2), which showed little effect of mixture 
and species richness on ψpd or HSMpd. Species composition (i.e., the 
identities of all the species in the mixture) had a greater effect on ψpd 
and HSMpd (p < .001),	although	it	explained	only	a	moderate	propor-
tion of variance (10.2% and 9% for raw data, 15.4% and 8% for data 

standardized within experiment). Results were qualitatively similar 
when analysing raw data or standardized data within experiment 
(Figure 3; Supporting information S7). Neighbouring basal area and 
tree size had significant effect on water stress and HSM in some of 
the explored models but explained only a small proportion of vari-
ance (Supporting information S7). When they had a significant effect, 
higher neighbouring basal area and greater tree size were associated 
with reduced water stress and higher HSM.

When evaluated at species level, a significant composition 
effect on ψpd and HSMpd was found in eight species out of 21 
(Figure 3). Yet, the principal variable explaining ψpd or HSMpd vari-
ance (41.1% and 48.4% for raw data, 32.3% and 56.7% for data 
standardized within experiment) was species identity. Among the 
22 studied mixtures, nine contained no species exhibiting a tree 
diversity effect on HSM, and only one contained only species ex-
hibiting a positive effect (Supporting information S10). In most of 

F I G U R E  3 (a,	b)	Effect	of	tree	species	diversity	on	predawn	water	potential	(Ψpd, a) and hydraulic safety margin (HSMpd, b). Filled points 
indicate that HSM of the species in at least one studied composition differs from monoculture. Blue line is the linear relation between 
monocultures and mixtures, black line is the 1:1 line. Only the identity of species exhibiting a significant diversity effect is shown: ACPL is 
Acer platanoides, ACPS is Acer pseudoplatanus, QUIL is Quercus ilex, LAEU is Larix x eurolepis, PIPA is Pinus pinaster, PHLA is Pinus halepensis, 
PSME is Pseudotsuga menziesii, TICO is Tilia cordata. (c, d) Partitioning of variance in the Ψpd (c) and HSMpd (d) datasets. Bars indicate the 
proportion of variance (partial R2) explained by the variables. The effects of three facets of diversity (mixture effect, species richness 
effect and composition effect) were explored in separate models to avoid collinearity problems (see main text). All the bars shown in (c, d) 
correspond to significant effect in Equation 2.
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    |  9 of 15DECARSIN et al.

the mixtures, only a subset of species exhibited a significant diver-
sity effect (five mixture out of 22 contained species with either 
positive or no effects, six out of 22 contained species with either 
negative or no effects).

3.3  |  Maximum diversity effect on HSM

The maximum diversity effect on HSM (i.e., the diversity effect 
observed in the mixture exhibiting the greatest difference with 
monoculture) was small in most of the studied species (Figure 4). 
However, at least one species per experiment exhibited a substantial 
(ΔHSMpd >0.4) diversity effect in at least one mixture composition. 
The greatest diversity effect was reported for Quercus ilex (ORPHEE 
experiment), which exhibited a 2.4 greater HSMpd in mixture than 
monoculture in the most favourable composition, that is in mixture 
with Pinus pinaster and Betula pendula, (Supporting information S8). 
Quercus ilex was also the only studied species that exhibited a signifi-
cant diversity effect in all of the studied mixture compositions where 
it was found (Supporting information S8). Conversely, the greatest 
negative effect of tree diversity (ΔHSMpd = −1.04)	was	 reported	 for	
Tilia Cordata (Btree experiment) when grown in mixture with Acer pla-
tanoides, Carpinus betulus and Quercus robur.

4  |  DISCUSSION

4.1  |  Tree species diversity effect on xylem 
vulnerability to cavitation

Overall, xylem vulnerability to cavitation (P50) was unaffected by tree 
diversity, which contradicts our first hypothesis. P50 has been recog-
nized as a key trait structuring drought tolerance between species 
(Choat et al., 2018; Martin- StPaul et al., 2017). However, plasticity of 
the P50 has been much less studied than interspecific differences, al-
though a few previous reports showed that changes in light exposition 
or water deficit could increase P50 in some tree species (e.g. Herbette 
et al., 2010; Schoonmaker et al., 2010; Schuldt et al., 2016). Two 
mechanisms could explain the overall lack of plasticity of P50 in our 
data: (1) P50 of the studied species is a conserved trait that do not vary 
with local growing conditions (Lamy et al., 2014) (2) the environmen-
tal drivers affecting P50 (e.g., light exposition or water deficit) did not 
exhibit substantial changes along the studied diversity gradients in the 
few years before sampling. Most of the studied mixtures includes spe-
cies with contrasting growth rates, which results in high tree size het-
erogeneity compared to monocultures (Supporting information S8). 
Moreover, leaf area index (LAI, estimated at plot level) strongly varies 
across diversity gradient (> Δ1 m2/m2) in all experiments (Supporting 

F I G U R E  4 Maximum	diversity	effect	
(MPa) on HSMpd (i.e., only the diversity 
effect observed in the mixture exhibiting 
the greatest difference with monoculture 
for drought- mortality risk is shown). Stars 
indicate a significant diversity effect.
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information S11). Together, these data suggest that at least some 
of the studied species experienced very contrasted light exposition 
across diversity gradients. Moreover, all experiments experienced at 
least	one	drought	year	in	the	5 years	before	measurement	(Figure 1). 
For these reasons, we posit that our results are primarily explained by 
the low environmental plasticity of hydraulic safety traits in trees (e.g. 
Lamy et al., 2014). Therefore, our findings add to a growing body of 
evidence suggesting that intra- species variability of P50, in particular 
its environmental plasticity, is limited compared to its inter- species 
variability (Fuchs et al., 2021; Martínez- Vilalta et al., 2009). This lack 
of directional change in xylem embolism resistance also corrobo-
rates the premise of P50 as an evolutionary canalised trait (Guillemot 
et al., 2022; Lamy et al., 2011; Sanchez- Martinez et al., 2020). At spe-
cies level, we only reported a small but significant tree diversity ef-
fect towards an increase in xylem embolism resistance in Pseudotsuga 
menziesii. Previous studies provide contrasting evidence regarding the 
intraspecific variability of P50 for this species (Chauvin et al., 2019; 
Condo & Reinhardt, 2019; Stout & Sala, 2003). Pseudotsuga menziesii 
at the FORBIO experiment was affected at the time of sampling by an 
insect outbreak that resulted in a partial defoliation. If the intensity 
of the biotic attack varied across diversity gradients, this could have 
contributed to the tree diversity effect that we report here.

Our findings suggest that the phenotypic expression of xylem em-
bolism resistance is largely independent from stand species diversity. To 
the best of our knowledge, this conservatism of P50 has been assumed 
in biodiversity- ecosystem functioning studies (Hajek et al., 2022; Mas 
et al., 2024), but had never been tested. It has important implications for 
the process- based modelling of tree diversity effects on forest drought- 
induced mortality, as these models commonly overlook intra- species 
variability in hydraulic safety traits (Ruffault et al., 2022; Venturas 
et al., 2021). It also implies that the tree diversity effect on drought- 
mortality risk (i.e., HSM) is mostly driven by tree diversity effect on tree 
water stress and not on tree vulnerability to drought. Tree water stress 
being determined by the soil properties and the control of water acqui-
sition and losses at tree to stand level, a better understanding of the 
biological determinants of these process in diverse forests is crucial for 
the prediction of drought- induced tree mortality under climate change.

4.2  |  Tree species diversity effects on water 
stress and drought- mortality risk

We did not find a consistent effect of stand species richness on tree 
water stress (i.e., water potential, Ψ), which ranged from positive, to 
neutral, to negative across species, plots and experiments. By contrast, 
species composition (i.e., the identity of the species in mixture) had a 
significant, but moderate in most cases, effects on tree water stress for 
a given species, in line with our first hypothesis. This, in turn, affected 
drought- mortality risk (i.e., hydraulic safety margins, HSM), which 
was also influenced by species composition. These findings corrobo-
rate previous knowledge gained using indirect proxies of water stress 
such as growth, sap- flow- derived transpiration and carbon isotope 
composition (Grossiord, 2020). Altogether, they support the view that 

local species interactions can mediate the effects of tree diversity on 
drought responses along the entire drought sequence, including physi-
ological processes that are down- regulated early during drought (e.g., 
growth and transpiration) and processes governing tree responses 
under extreme drought (i.e., measured by HSM). Our results contrast 
with a recent global study reporting a consistent positive effect of spe-
cies richness on drought resilience estimated using eddy- covariance 
fluxes (Anderegg et al., 2018) or estimated using satellite- derived 
NDVI (Liu et al., 2022). Better understanding the extent to which phe-
nological patterns captured by NDVI quantify actual water stress or 
species strategies to avoid drought may allow explaining this apparent 
discrepancy (Oliveira et al., 2021).

Our results partly contradict the recent proposition from Haberstroh 
and Werner (2022) that negative interactions among species are prom-
inent under extreme droughts because of increased competition for 
soil water. Indeed, our data, acquired in extreme drought conditions, 
do not show any particular trend towards negative interactions in mix-
tures. By contrast, in the ORPHEE experiment, drought- mortality risk 
was significantly reduced in mixture for two species (Quercus ilex and 
Pinus pinaster). This discrepancy likely results from the fact that the dif-
ferent processes driving tree water stress can be affected by tree diver-
sity. In particular, both soil water content and microclimate conditions 
(i.e., local temperature, radiation, vapour pressure deficit), that is, both 
soil and atmospheric drought, can be influenced by tree diversity (Ma 
et al., 2023; Martin- Guay et al., 2022; Zhang et al., 2022). Even if com-
plementarity in soil water use is overridden by increased competition 
intensity for soil water during extreme drought, the beneficial effect of 
microclimate buffering for shade- tolerant species growing in the un-
derstory of diverse stands can still reduce their drought–mortality risk. 
This is supported by the fact that in the ORPHEE experiment, Quercus 
ilex is largely dominated by Pinus pinaster (Supporting information S8). 
Consequently, Quercus ilex experiences very contrasted microclimatic 
conditions in monoculture and mixtures, as suggested by an increase 
>30% in leaf area index in mixture (Supporting information S11). This 
likely translates into an important alleviation of atmospheric drought 
experienced by Quercus ilex and may explain the strongly positive di-
versity effect shown in Figure 4. Moreover, a recent diversity experi-
ment conducted in greenhouse with Quercus ilex and Pinus halepensis 
showed that their complementarity in hydraulic strategies (in terms of 
stomatal regulation and hydraulic connection to the soil and the atmo-
sphere) benefit both species in mixture (Moreno et al., 2021). In addi-
tion to the reduction of water competition intensity for Pinus pinaster 
in mixtures (as Quercus ilex exhibited much slower growth), this mech-
anism may contribute to explain the positive diversity effect on Pinus 
pinaster observed in the ORPHEE experiment.

More generally, our results suggest that higher neighbouring basal 
area is associated with reduced water stress and greater HSM in our 
data set. Although this effect is small and likely varies with species and 
composition, this indicates that facilitation mechanisms such as mi-
croclimate buffering are important drivers of diversity outcome in the 
studied experiment (Ma et al., 2023; Zhang et al., 2022). In addition, 
we report that in some cases, taller trees of a given species exhibited 
reduced water stress and greater HSM. This may be due to a better soil 
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exploration by the roots of taller trees (Bolte et al., 2004), and indicates 
that diversity effects on forest productivity and growth may indirectly 
affect the drought resistance of mixed forests.

4.3  |  Broad perspectives for forest management

In line with our second hypothesis, we found that drought- mortality 
risk in relatively young (8-  to 14- year- old) plantations depends 
more on intrinsic species resistance than on stand species diversity. 
Therefore, tree vulnerability and water stress under extreme drought 
exhibit much greater interspecific variability than diversity- driven in-
traspecific variability. This implies that the species favoured by forest 
managers, either through natural regeneration or tree planting, will 
strongly condition the drought resistance of young stands, even in di-
verse forests. Interestingly, our results were comparable when analys-
ing the raw data (i.e., including both the variability within and among 
experiments) and the data standardized within experiment (i.e., focus-
sing on species identity and diversity effects within each experiment). 
This means that in practice, the preponderant importance of species 
selection over diversification holds true regardless of whether the se-
lection involves only local species or includes species from different 
biomes through assisted migration.

Tree diversity effect was not significant in many species and its 
effect magnitude on drought- mortality risk was commonly (but not 
always) small. Given the ongoing increase in intensity and frequency 
of extreme drought, it is likely the tree diversity effects documented 
in this study will not substantially change the way most species cope 
with future conditions. Overall, our results suggest that tree diversity 
has inconsistent effects on drought–mortality risk in young trees. This 
calls for a better understanding of the underlying mechanisms before 
tree diversity can be considered an operational adaption tool to ex-
treme drought. Moreover, forest diversification should be considered 
jointly with management strategies focussed on favouring drought- 
tolerant species. It should also be noted that all but one of the stud-
ied mixtures did not exhibit positive effects in all species. This means 
that forest managers will in most cases need to identify target species, 
which will benefit from the mixture and exhibit increased drought re-
sistance, and companion species, which will be used to optimize the 
growth and survival of the target species without benefiting from the 
mixture.

Importantly, our study was conducted in young plantations 
(<14 years),	 where	 ecological	 interactions	 among	 species	 may	 sub-
stantially change along stand development (Jucker et al., 2020). 
Further study in mature stands will be necessary to draw general 
forest guidelines for drought adaptation. Nonetheless, our study 
was based on five experiments with very different soil and climate 
conditions, and contrasting management (especially initial planting 
density). This suggests that our main results are generalisable to a 
large variety of young forests and plantations. More generally, it will 
be crucial to integrate this new knowledge of tree diversity effects 
on extreme drought resistance with the other constraints and objec-
tives of forest management. In particular, potential diversity- mediated 

trade- off between drought risk and growth should be identified to 
allow designing adaptive silviculture guidelines in production forests 
and plantations.
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