Genetic determinism of anatomical and hydraulic traits within an apple progeny

PIERRE-ÉRIC LAURI1, OLIVIER GORZA1, HERVÉ COCHARD2, SÉBASTIEN MARTINEZ1, JEAN-MARC CELTON1, VÉRONIQUE RIPETTI1, MARC LARTAUD3, XAVIER BRY4, CATHERINE TROTTIER4 & EVELYNE COSTES1

1INRA, UMR 1334 AGAP, F-34398 Montpellier Cedex 5, France, 2INRA, UMR 547 PIAF, F-63100 Clermont-Ferrand, France, 3CIRAD, UMR 1334 AGAP, F-34398 Montpellier Cedex 5, France and 4Université Montpellier II, UMR I3M, F-34095 Montpellier Cedex 5, France

ABSTRACT

The apple tree is known to have an isohydric behaviour, maintaining rather constant leaf water potential in soil with low water status and/or under high evaporative demand. However, little is known on the xylem water transport from roots to leaves from the two perspectives of efficiency and safety, and on its genetic variability. We analysed 16 traits related to hydraulic efficiency and safety, and anatomical traits in apple stems, and the relationships between them. Most variables were found heritable, and we investigated the determinism underlying their genetic control through a quantitative trait loci (QTL) analysis on 90 genotypes from the same progeny. Principal component analysis (PCA) revealed that all traits related to efficiency, whether hydraulic conductivity, vessel number and area or wood area, were included in the first PC, whereas the second PC included the safety variables, thus confirming the absence of trade-off between these two sets of traits. Our results demonstrated that clustered variables were characterized by common genomic regions. Together with previous results on the same progeny, our study substantiated that hydraulic efficiency traits co-localized with traits identified for tree growth and fruit production.

Key-words: Malus domestica; cavitation; heritability; hydraulic conductivity; pith area; QTL; wood area; xylem efficiency; xylem safety; xylem vessel.

INTRODUCTION

From a xylem hydraulic perspective, the global performance of a plant relies on two main characteristics: efficiency (i.e. volume flow rate per pressure gradient) and safety (i.e. the ability to transport sap on a long distance and in a large range of environmental conditions). Because xylem sap is transported from roots to leaves under negative pressure, it is susceptible to cavitation events (i.e. the transition from liquid water to stable vapour phase). The most relevant estimator of cavitation is the degree of embolism which is directly related to the amount of blockage of xylem sap transport in vessels caused by air bubbles (Sperry & Tyree 1988; Tyree & Ewers 1991; Cochard et al. 2010). The xylem safety of a stem is assessed through the curve, called the vulnerability curve (VC), relating water potential (P, MPa) and the loss of hydraulic conductivity (PLC, %). Two parameters are used to summarize the sigmoid-type curve that is usually obtained: the value at which 50% of the conductivity is lost (P_{50}) and the slope of the curve at this point (Cruiziat, Cochard & Améglio 2002). A high hydraulic safety (i.e. low negative values of P_{50}) means high resistance to cavitation and, therefore, to embolism. It is established that resistance to cavitation is positively related to resistance to drought (Sperry & Tyree 1988; Maharali, Pockman & Jackson 2004; Cochard et al. 2008; Blackman, Brodribb & Jordan 2010), even though there is still a gap between our knowledge on experimentally induced cavitation and plant adaptation to drought (Brodribb et al. 2010).

There is a positive relationship between high growth potential at shoot and tree levels, and the following two traits: xylem axial conductivity (i.e. volume flow rate per pressure gradient per length) (Iwanami, Moriya & Abe 2009; Tombesi et al. 2010) and xylem vessel lumen area (Atkinson et al. 2003; Sellin, Rohejava & Rahi 2008; Russo et al. 2010; Tombesi et al. 2010). These relationships are easily explained by the Hagen–Poiseuille law stating that xylem hydraulic conductivity increases with the fourth power of vessel radius (Tyree & Sperry 1989; Tyree, Davis & Cochard 1994; Cruiziat et al. 2002; Lemoine, Jacquemin & Granier 2002; Knoblauch & Peters 2010). Complementing these results at within-stem level, it has been shown that xylem conductance at the junction between the stem and the axillary bud is positively related to the size and the number of appendages of this axillary bud (Cochard et al. 2005a; Lauri et al. 2008). On the other hand, the relationship between xylem anatomy and xylem safety is more controversial, and although vessel diameter is positively related to frost-induced embolism, the relationship between vessel diameter and drought induced-embolism is much weaker (Tyree et al. 1994). Indeed, depending on studies, there is a negative (Lemoine et al. 2002; Hacke, Jacobsen & Pratt 2009), a positive (Cai & Tyree 2010; Markesteijn et al. 2011) or even no consistent (Rosner et al. 2007; Willson, Manos & Jackson 2008; Fichot et al. 2010; Schreiber et al. 2011) relationship between vessel diameter or transport efficiency.
and vulnerability to embolism. It has been shown that drought-induced embolism is in fact more related to vessel wall structure, that is, inter-vessel wall thickness (Cochard et al. 2010; Fichot et al. 2010), pit pore and pit membrane area, and pit membrane porosity (Tyree & Sperry 1989; Hacke et al. 2001; Lemoine et al. 2002; Choat, Cobb & Jansen 2008; Chen et al. 2009; Cochard et al. 2009; Hacke et al. 2009; Cai & Tyree 2010). The weak overlapping between xylem anatomical features underlying efficiency and safety is likely to explain why a lack of trade-off between xylem efficiency and xylem safety is often shown (Willson et al. 2008). The finding that calcium is a major determinant of between-species differences in vulnerability to cavitation without effects on xylem efficiency brings more support to this idea (Sperry & Tyree 1988; Herbette & Cochard 2010).

Most of the studies on hydraulics and related anatomical features in perennials were carried out across a small number of taxa at various orders (e.g. family, genera, species or clones; Rosner et al. 2007; Cochard et al. 2008; Fichot et al. 2010), possibly including different ecological groups (e.g. shade-tolerant species versus pioneers; Markesteijn et al. 2011). Furthermore, although cavitation resistance has been widely investigated across species (Brodrribb et al. 2010; Fichot et al. 2010), there are only a few studies comparing closely related genotypes (Sangsing et al. 2004; Cochard, Casella & Mencuccini 2007). There is still a lack of studies assessing the genetic determinism of hydraulic and related anatomical traits in genotypes with the same parentage. Understanding the genetic determinisms of complex traits can be carried out through quantitative genetic studies that aim at analyzing the trait variability and estimating the expected genetic improvement (Hill 1971; Gallais 1990). For this purpose, the concept of heritability has been introduced (Hanson 1963; Falconer 1981). Moreover, the mapping of quantitative trait loci (QTL) is a key tool that has been widely used to detect the genomic regions that control variation in quantitative traits. However, both accurate heritability estimates and QTL detection require the phenotyping of a large number of individuals (Yao & Mehlenbacher 2000; Liebhard et al. 2003). Despite this methodological constraint, this approach has been used in perennials, on both forest (e.g. Scotti-Saintagne et al. 2004) and fruit trees. In the latter case, several studies have been developed in the apple, for example, to characterize the genetic determinism of quantitative traits such as disease resistance (Calenge & Durel 2006; Soufflet-Freslon et al. 2008) or tree growth and branching (Conner, Brown & Weeden 1998; Liebhard et al. 2003; Kenis & Keulemans 2007; Segura et al. 2007, 2008).

The domesticated apple, Malus domestica, was chosen for this study. Originating from the mountainous regions of central Asia with a continental climate (Harris, Robinson & Juniper 2002), it has a worldwide geographical and climatic distribution from high elevations in the equatorial climate (Janick 1974) to high latitudes in Europe and North America (Luby 2003). Although most of the apple production comes from temperate climate, apple is also cultivated in semi-arid regions where irrigation is crucial (Webster 2005). The adaptation of apples to drought is likely to be a main challenge genetics and breeding will have to face. This issue can be addressed through a better understanding of water transport and use at two different and complementary levels: hydraulic conductance at stem level and stomatal conductance at leaf level (Sperry, Alder & Eastlack 1993; Cruiziat et al. 2002; Chen et al. 2009). A recent study developed on an apple progeny shows that stomatal conductance strongly decreases with increased vapour pressure deficit (VPD) with high broad-sense heritability for this trait (Regnard et al. 2009). These results agree with the fact that apples are classified as isohydric, with an early stomatal closure maintaining high leaf water potential in trees growing in soil with low water status and/or under high evaporative demand (Parent et al. 2010).

Our aims were to extend these preliminary results, and to analyse the xylem water transport efficiency and cavitation resistance, encompassing anatomical and hydraulic traits, across genotypes belonging to the same apple progeny as the one studied by Regnard et al. (2009). Our study focused on two points: (1) the relationship between xylem efficiency and xylem safety, and the possibility that some genotypes expressed both an efficient and a safe xylem hydraulic system; and (2) the broad-sense heritability of the studied traits and their genetic determinism through a QTL analysis.

MATERIALS AND METHODS

Study area and plant material

The studied apple progeny was derived from a ‘Starkrimson’ × ‘Granny Smith’ cross characterized by a strong variability of tree vigour and architectural traits (Segura et al. 2006, 2007; Segura, Cilas & Costes 2008). In March 2004, 123 own-rooted trees issued from cuttings, one tree per genotype, were randomly planted among trees belonging to other progenies at the Melgueil INRA Montpellier Experimental Station (south-east of France, 43°37N, 03°52E). Plantation distances were 5 m between the rows and 1.5 m within the row with an east–west row orientation. Trees were minimally pruned during the whole trial, except in winter 2008–2009 to promote growth of new shoots convenient for hydraulic studies. Irrigation and fertilization scheduling, as well as pest and disease control, were carried out by conventional means in line with professional practices in the region. In February 2010, 90 7-year-old trees, one tree per genotype, were chosen based on their good health and having 2009 annual stem length compatible with the caviton technique (i.e. annual stem equal or longer than 40 cm) (see below). All sampled stems were in horizontal to upright position on the south-oriented face of the trees.

Xylem conductivity and wood anatomy

Four c. 40-cm-long, 1-year-old stems per tree/genotype were sampled between the 5th and 10th of February 2010, and immediately wrapped in a black plastic bag with moist
paper towels to minimize dehydration and brought to a cold chamber at 5 °C. Prior to measurement, each stem was cut again at the bottom end so as to have exactly a length of 36 cm. The bottom and top diameters of the sampled stems (BD and TD, respectively) were then measured. The stem hydraulic conductivity (K_s, mmol s$^{-1}$ MPa$^{-1}$m; Tyree & Ewers 1991) was measured using the high-pressure flow meter (HPFM; Dynamax, Houston, TX, USA; Tsuda & Tyree 2000) apparatus, which is based on the perfusion of deionized and filtered water at a given pressure at the bottom of the cut stem (P, MPa) and measurement of the rate of water exudation (F, mmol s$^{-1}$) at the top end. Water exudation was measured using a 50 mL beaker applied for 1 min to the cut top-end surface. The difference in beaker weight, to the nearest tenth of a milligram, before and after measurement gave the amount of water exuded. Once K_s was measured, the longest internode at the top of each stem was cut and immediately put in glutaraldehyde–paraformaldehyde–caffeine (GPC) fixative for 24 h. It was then dehydrated in a graded ethanol series and eventually kept in 70% alcohol for later anatomical investigations. The stem anatomical analysis was performed using the open-source ImageJ freeware (using ImageJ freeware) of individual vessels (b).

Three variables were computed from the previous ones: ratio of K_s to total xylem vessel area (VA) [i.e. hydraulic specific conductivity (K_w)], proportion of wood area (WA) among wood and pith area (PA) (WAprop) and number of vessels (VN) per unit of wood area (WA) [i.e. vessel density (VD)]. Moreover, to get a more accurate view of the distribution of vessel cross-section areas across genotypes the numbers and proportions of vessels in two extreme cross-section area categories, narrow and large, were computed as follows. The values of vessel area corresponding to the upper limits of the first, second and third quartiles were determined over the whole database. They yielded to the following values: 44, 79 and 120 μm2, respectively. These threshold values were then applied to each individual image and the proportion of vessels within quartile 1 (PVQ1; from the minimal size value chosen in our study 21.5 to 44 μm2) and quartile 4 (PVQ4; from 120 to 600 μm2 this latter value being the maximum vessel area observed) were computed. For better legibility in the following, PVQ1 and PVQ4 will be termed proportion of small and large vessels, respectively. In c. 75% of the slides, an average of 1/10th of wood area staining was insufficiently rinsed out, leading to inaccurate counting of vessel and measurement of vessel area. In this case, the mean number of vessel and vessel area of this part were then estimated by inference from the remaining part of the wood section from the same slide.

Two theoretical variables were computed from these anatomical data. The hydraulic vessel diameter

$$D_h = \sum_{i=1}^{i=n} \frac{d^5}{4} \text{ (μm)},$$

where d is the diameter of one vessel (considering the vessel cross-section as a circle) which aims to take into account the fact that large vessels are more conductive than narrow vessels (Tyree & Zimmermann 2002). The theoretical xylem hydraulic conductivity (K_{ht}, mmol s$^{-1}$ MPa$^{-1}$m) based on the Hagen–Poiseuille law for ideal capillaries of circle cross-section and assuming laminar flow,

$$K_{ht} = \sum_{i=1}^{i=n} \frac{\pi d^4 \eta}{128} L_i,$$
where \(d \) is vessel diameter, and \(\eta \) is viscosity of the solution in the vessels at \(20^\circ C \) \((1.002 \times 10^{-3} \) MPa) (Tyree & Zimmermann 2002; Cai & Tyree 2010).

Vulnerability to cavitation

Vulnerability to cavitation was determined on another set of two to four stems per tree sampled at once in the end of April 2010. Stems were analogous to the ones sampled for the conductivity experiment and were stored in the same way. Cavitation measurements spread over 4 weeks beginning the day of sampling and were done each consecutive day on randomly chosen stems. There was no significant drift with time of the slope and \(P_{50} \) confirming recent findings by Herbette *et al.* (2010) on beech showing that stem segments stored for up to 10 weeks at \(5^\circ C \) in humid dark conditions were still suitable for \(P_{50} \) determination. Xylem cavitation was assessed with the Cavitron technique (Cochard *et al.* 2005b). The principle of the technique is to use centrifugal force to increase the water tension in the stem segment and, at the same time, to measure the decrease of its hydraulic conductance. This technique is reliable only if vessels are shorter than the sample length to avoid vessels open at both ends. To assess this, we used the air infiltration technique (Cochard *et al.* 2010). One extremity of each stem was immersed in water, and the other extremity was infiltrated with compressed air \((0.15 \) MPa). In the case vessels were open at both ends, air bubbles were released in the water. In almost all cases, there were no or only a few vessels open, confirming the 36-cm-long stem was convenient for the apple. The VC was computed as follows. The maximum sample conductivity \((K_{\text{max}}) \) was first measured at low speed and high pressure \((-0.1 \) MPa). Xylem pressure was then lowered stepwise by increasing the rotational velocity, and \(K \) was determined anew. Each value was the mean or three batches of five measurements each. Sample loss of conductivity (%) was computed as:

\[
\text{PLC} = 100 \times 1 - \frac{K}{K_{\text{max}}},
\]

(3)

The observed curve was then fitted to a sigmoid curve using the Excel software solver:

\[
\text{PLC} = \frac{100}{1 + \exp \left(\frac{\text{slope} \times \left(\frac{2}{\pi} \arctan \left(\frac{1}{P_{50}} \right) \right)}{\text{slope}} \right)},
\]

(4)

\(P_{50} \) (expressed here as a tension, MPa) and the slope (SL, % MPa) were determined from the fitted sigmoid curve. Variables with abbreviations and formula are detailed in Table 1.

Data analysis

Data were analysed in the following two steps.

Firstly, broad sense heritability of phenotypic means \((h^2_{\text{b}}) \) was estimated as \(\sigma^2 G / [\sigma^2 G + (\sigma^2 e / n)] \), where \(\sigma^2 G \) and \(\sigma^2 e \) are the genotypic and residual variances, respectively, and \(n \) is the mean number of stems (two to four per tree/genotype depending on the variable). \(h^2_{\text{b}} \) was derived from the \(F \)-value in the one-way analysis of variance (ANOVA) as \(1 - (1/F) \) (Gallais 1990). The associated confidence interval (CI) was calculated according to Knapp, Stroup & Ross (1985) with the lower and upper limits equal to \([1 - 1/ (F_{0.025} \cdot F_{0.975})] \) and \([1 - 1/(F_{0.025} \cdot F_{0.975})] \), respectively. The ANOVA model for unbalanced data (type III) was performed using the R freeware, version 2.7.2 (http://www.rproject.org) with package ‘car’. A variable was considered heritable when the lower limit of the CI of \(h^2_{\text{b}} \) was positive.

Secondly, the distribution of genotypes (one average value per genotype) in the space of the heritable variables was investigated through a principal component analysis (PCA). To avoid the overweighting of bundles containing many correlated (positively or negatively) variables, which may bias PCA analyses, the following procedure was developed. A clustering analysis was first carried out on the sine\(^2\) \((\text{i.e. } 1 - R^2)\) distance matrix between the variables with the agglomeration method ‘average’. The sine\(^2\) is being used in order to account for the variable directions only. Indeed, two highly correlated variables, positively or negatively \((R \text{ reaching } +1 \text{ or } -1, \text{ respectively})\), will thus have a short distance between them \([\sin^2(-1) = \sin^2(+1) = 0]\), whereas two low correlated variables \((R \text{ reaching } 0)\) will be separated by the maximum distance \([\sin^2(0) = 1]\). A PCA was then carried out within each group of clustered variables so as to determine a new synthetic variable estimated by the first principal component. We considered that this new variable was well representative of the cluster when the principal component of this cluster was taking into account a minimum of 75% of the total variance. Eventually, a new PCA was carried out on the synthetic variables. All analyses were performed using R freeware version 2.7.2 (http://www.rproject.org) with packages ‘car’, ‘cluster’ and ‘HSAUR’ to compute the correlation matrix, clustering analysis and PCAs, respectively.

QTL map and QTL detection

QTL detection was performed using a genetic map developed by Segura *et al.* (2007) and further saturated by Guitton *et al.* (submitted). The final integrated map consisted of 164 genetic markers and covered 1037 cM. QTL analysis was carried out using MapQTL 4 (Van Ooijen et al. 2002) on the mean phenotypic value of all repetitions. For each variable, the logarithm of the odds (LOD) threshold value, at which a QTL was declared significant, was computed according to a genome-wide error rate of 0.05 over 1000 permutations of the data (Churchill & Doerge 1994). An interval mapping analysis was then performed with a step size of 1 cM in order to identify regions with potential QTL effects. QTLs were declared significant if the maximum LOD exceeded the genome-wide threshold previously calculated. Subsequently, the nearest marker to each QTL peak was selected as cofactor, and a multiple...
QTL mapping (MQM, Jansen & Stam 1994) was performed. Following the MQM mapping step, each significant QTL was characterized by its LOD score, the percentage of phenotypic variation explained and its CI in centiMorgan (cM), corresponding to a LOD score drop of 2 on either side of the likelihood peak. QTL location on the integrated genetic map was represented using MapChart (Voorrips 2001).

RESULTS

Broad-sense heritability and correlations between anatomical and hydraulic traits

Whatever the category to which they belonged to (stem morphology and anatomy, wood anatomy and hydraulics), the variables were generally highly heritable with h^2_b values between 0.58 (for slope) to 0.81 (for the three variables bottom diameter, wood area and wood area proportion) (Table 1). There was no lower threshold of CI below 0.37 (for slope; Table 1). K_{hs} was the only exception with the lowest h^2_b value (0.21) and a lower limit of CI negative (-0.12; Table 1). Phenotypic correlations and PCA were then carried out on all the variables, but K_{hs} across the whole progeny.

The analyses of phenotypic correlations among the variables showed the following results (Table 2). The two variables of hydraulic safety (P_{50}, slope) were positively correlated to each other, but not correlated with the other variables. Among the other variables, there were generally positive correlations between the variables of stem morphology and anatomy, wood anatomy and hydraulic efficiency, meaning that an increase of bottom diameter and top diameter was related to an increase of anatomical traits (vessel number, vessel area, wood area, wood area proportion), and of K_h and K_{ht}. There were, however, two exceptions. Firstly, pith area was positively correlated with top diameter, and negatively with wood area proportion.

<table>
<thead>
<tr>
<th>Trait</th>
<th>Abbreviation</th>
<th>Unit</th>
<th>Values</th>
<th>h^2_b</th>
<th>CI (95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom diameter</td>
<td>BD</td>
<td>mm</td>
<td>6.2 (5.4–6.9)</td>
<td>0.81</td>
<td>0.72–0.86</td>
</tr>
<tr>
<td>Top diameter</td>
<td>TD</td>
<td>mm</td>
<td>3.2 (2.8–3.7)</td>
<td>0.70</td>
<td>0.58–0.79</td>
</tr>
<tr>
<td>Pith area</td>
<td>PA</td>
<td>μm^2</td>
<td>1 327 478.9 (1 048 032.6–1 672 765.4)</td>
<td>0.75</td>
<td>0.65–0.82</td>
</tr>
<tr>
<td>Wood area</td>
<td>WA</td>
<td>μm^2</td>
<td>1 770 421.8 (1 182 581.4–2 464 564.8)</td>
<td>0.81</td>
<td>0.73–0.86</td>
</tr>
<tr>
<td>Proportion of wood area</td>
<td>WApr</td>
<td></td>
<td>0.56 (0.46–0.66)</td>
<td>0.81</td>
<td>0.72–0.86</td>
</tr>
<tr>
<td>Number of xylem vessels</td>
<td>VN</td>
<td></td>
<td>1 123.1 (826.4–1468.2)</td>
<td>0.80</td>
<td>0.71–0.85</td>
</tr>
<tr>
<td>Total area of lumen of xylem vessels</td>
<td>VA</td>
<td>μm^2</td>
<td>209 749.0 (129 039.6–281 852.1)</td>
<td>0.78</td>
<td>0.68–0.84</td>
</tr>
<tr>
<td>Vessel density (ratio VN/WA)</td>
<td>VD</td>
<td>μm^2</td>
<td>65.8 10^{-5} (55.0 10^{-5}–75.7 10^{-5})</td>
<td>0.70</td>
<td>0.58–0.79</td>
</tr>
<tr>
<td>Hydraulic vessel diameter</td>
<td>D_h</td>
<td>μm</td>
<td>18.9 (17.2–20.6)</td>
<td>0.77</td>
<td>0.67–0.84</td>
</tr>
<tr>
<td>Proportion of vessels within quartile 1 (narrow vessels)</td>
<td>PVQ1</td>
<td></td>
<td>0.27 (0.20–0.35)</td>
<td>0.68</td>
<td>0.55–0.77</td>
</tr>
<tr>
<td>Proportion of vessels within quartile 4 (large vessels)</td>
<td>PVQ4</td>
<td></td>
<td>0.23 (0.11–0.34)</td>
<td>0.77</td>
<td>0.67–0.83</td>
</tr>
<tr>
<td>Hydraulic conductivity</td>
<td>K_h</td>
<td>mmol s$^{-1}$ MPa$^{-1}$ m$^{-1}$</td>
<td>0.26 (0.14–0.35)</td>
<td>0.77</td>
<td>0.67–0.83</td>
</tr>
<tr>
<td>Theoretical hydraulic conductivity</td>
<td>K_{ht}</td>
<td>mmol s$^{-1}$ MPa$^{-1}$ m$^{-1}$</td>
<td>0.12 (0.06–0.17)</td>
<td>0.73</td>
<td>0.61–0.80</td>
</tr>
<tr>
<td>Hydraulic specific conductivity (ratio K_h/VA)</td>
<td>K_{hs}</td>
<td>mmol s$^{-1}$ MPa$^{-1}$ μm^{-2}</td>
<td>1.23 10^{-4} (9.08 10^{-5}–1.52 10^{-4})</td>
<td>0.21</td>
<td>–0.12–0.43</td>
</tr>
<tr>
<td>Tension value causing 50% loss of hydraulic conductivity</td>
<td>P_{50}</td>
<td>MPa</td>
<td>–4.3 (–5.2–3.3)</td>
<td>0.79</td>
<td>0.69–0.86</td>
</tr>
<tr>
<td>Slope at P_{50}</td>
<td>SL</td>
<td>% MPa</td>
<td>23.2 (17.7–29.4)</td>
<td>0.58</td>
<td>0.37–0.71</td>
</tr>
</tbody>
</table>

© 2011 Blackwell Publishing Ltd, Plant, Cell and Environment, 34, 1276–1290
Secondly, vessel density and the proportion of small vessels were positively correlated to each other (the more numerous the vessels, the narrower they are), but negatively correlated with the other variables except pith area and the two positively correlated safety variables, \(P_{50} \) and slope.

Two correlations need a further comment. Firstly, although vessel number was positively correlated with both the number of narrow and large vessels (Fig. 2), the slope of the relationship was steeper with the latter than with the former, resulting in a negative correlation between vessel number and the proportion of small vessels, and a positive correlation between vessel number and the proportion of large vessels (Table 2). Secondly, \(K_s \) was positively and linearly correlated with \(K_h \) (Table 2). However, \(K_s \) underestimated \(K_h \) by a factor of proportionality of c. 2.35 (data not shown).

The clustering analysis revealed six groups (Fig. 3). Four clusters were composed of isolated variables: two clusters were related to anatomical variables (pith area, vessel density), and two clusters were related to hydraulic safety (slope, \(P_{50} \)). The two other clusters, termed synthetic clusters, were composed of several variables. The first cluster, termed groupD for diameter, included the three variables related to vessel diameter, proportion of small vessels, proportion of large vessels and \(D_h \). The second cluster, termed groupC for conductivity, included hydraulic conductivity \((K_{50}, K_s) \) and all the correlated variables: bottom diameter, top diameter, vessel number, vessel area, wood area, wood area proportion. The first component of the PCA carried out on each synthetic cluster, groupD and groupC, took into account 95 and 79% of variance, respectively. Within groupD, the proportion of large vessels was the most correlated to the first principal component of the PCA carried out on the cluster \((R = 0.99) \). Within groupC, vessel area and wood area contributed equally to the first principal component of the PCA carried out on the cluster \((R = 0.97) \) (Table 3).

The PCA carried out on the new set of variables (i.e. the single ones and the two new synthetic variables (groupD

\[
\text{Number of vessels in } 1^{\text{st}} \text{ quartile} \quad \text{4th quartile}
\]

\[
\text{Total number of vessels}
\]

Secondly, vessel density and the proportion of small vessels were positively correlated to each other (the more numerous the vessels, the narrower they are), but negatively correlated with the other variables except pith area and the two positively correlated safety variables, \(P_{50} \) and slope.

Two correlations need a further comment. Firstly, although vessel number was positively correlated with both the number of narrow and large vessels (Fig. 2), the slope of the relationship was steeper with the latter than with the former, resulting in a negative correlation between vessel number and the proportion of small vessels, and a positive correlation between vessel number and the proportion of large vessels (Table 2). Secondly, \(K_s \) was positively and linearly correlated with \(K_h \) (Table 2). However, \(K_s \) underestimated \(K_h \) by a factor of proportionality of c. 2.35 (data not shown).

The clustering analysis revealed six groups (Fig. 3). Four clusters were composed of isolated variables: two clusters were related to anatomical variables (pith area, vessel density), and two clusters were related to hydraulic safety (slope, \(P_{50} \)). The two other clusters, termed synthetic clusters, were composed of several variables. The first cluster, termed groupD for diameter, included the three variables related to vessel diameter, proportion of small vessels, proportion of large vessels and \(D_h \). The second cluster, termed groupC for conductivity, included hydraulic conductivity \((K_{50}, K_s) \) and all the correlated variables: bottom diameter, top diameter, vessel number, vessel area, wood area, wood area proportion. The first component of the PCA carried out on each synthetic cluster, groupD and groupC, took into account 95 and 79% of variance, respectively. Within groupD, the proportion of large vessels was the most correlated to the first principal component of the PCA carried out on the cluster \((R = 0.99) \). Within groupC, vessel area and wood area contributed equally to the first principal component of the PCA carried out on the cluster \((R = 0.97) \) (Table 3).

The PCA carried out on the new set of variables (i.e. the single ones and the two new synthetic variables (groupD

\[
\text{Number of vessels in } 1^{\text{st}} \text{ quartile} \quad \text{4th quartile}
\]

\[
\text{Total number of vessels}
\]

Secondly, vessel density and the proportion of small vessels were positively correlated to each other (the more numerous the vessels, the narrower they are), but negatively correlated with the other variables except pith area and the two positively correlated safety variables, \(P_{50} \) and slope.

Two correlations need a further comment. Firstly, although vessel number was positively correlated with both the number of narrow and large vessels (Fig. 2), the slope of the relationship was steeper with the latter than with the former, resulting in a negative correlation between vessel number and the proportion of small vessels, and a positive correlation between vessel number and the proportion of large vessels (Table 2). Secondly, \(K_s \) was positively and linearly correlated with \(K_h \) (Table 2). However, \(K_s \) underestimated \(K_h \) by a factor of proportionality of c. 2.35 (data not shown).

The clustering analysis revealed six groups (Fig. 3). Four clusters were composed of isolated variables: two clusters were related to anatomical variables (pith area, vessel density), and two clusters were related to hydraulic safety (slope, \(P_{50} \)). The two other clusters, termed synthetic clusters, were composed of several variables. The first cluster, termed groupD for diameter, included the three variables related to vessel diameter, proportion of small vessels, proportion of large vessels and \(D_h \). The second cluster, termed groupC for conductivity, included hydraulic conductivity \((K_{50}, K_s) \) and all the correlated variables: bottom diameter, top diameter, vessel number, vessel area, wood area, wood area proportion. The first component of the PCA carried out on each synthetic cluster, groupD and groupC, took into account 95 and 79% of variance, respectively. Within groupD, the proportion of large vessels was the most correlated to the first principal component of the PCA carried out on the cluster \((R = 0.99) \). Within groupC, vessel area and wood area contributed equally to the first principal component of the PCA carried out on the cluster \((R = 0.97) \) (Table 3).

The PCA carried out on the new set of variables (i.e. the single ones and the two new synthetic variables (groupD

\[
\text{Number of vessels in } 1^{\text{st}} \text{ quartile} \quad \text{4th quartile}
\]

\[
\text{Total number of vessels}
\]

Secondly, vessel density and the proportion of small vessels were positively correlated to each other (the more numerous the vessels, the narrower they are), but negatively correlated with the other variables except pith area and the two positively correlated safety variables, \(P_{50} \) and slope.

Two correlations need a further comment. Firstly, although vessel number was positively correlated with both the number of narrow and large vessels (Fig. 2), the slope of the relationship was steeper with the latter than with the former, resulting in a negative correlation between vessel number and the proportion of small vessels, and a positive correlation between vessel number and the proportion of large vessels (Table 2). Secondly, \(K_s \) was positively and linearly correlated with \(K_h \) (Table 2). However, \(K_s \) underestimated \(K_h \) by a factor of proportionality of c. 2.35 (data not shown).

The clustering analysis revealed six groups (Fig. 3). Four clusters were composed of isolated variables: two clusters were related to anatomical variables (pith area, vessel density), and two clusters were related to hydraulic safety (slope, \(P_{50} \)). The two other clusters, termed synthetic clusters, were composed of several variables. The first cluster, termed groupD for diameter, included the three variables related to vessel diameter, proportion of small vessels, proportion of large vessels and \(D_h \). The second cluster, termed groupC for conductivity, included hydraulic conductivity \((K_{50}, K_s) \) and all the correlated variables: bottom diameter, top diameter, vessel number, vessel area, wood area, wood area proportion. The first component of the PCA carried out on each synthetic cluster, groupD and groupC, took into account 95 and 79% of variance, respectively. Within groupD, the proportion of large vessels was the most correlated to the first principal component of the PCA carried out on the cluster \((R = 0.99) \). Within groupC, vessel area and wood area contributed equally to the first principal component of the PCA carried out on the cluster \((R = 0.97) \) (Table 3).

The PCA carried out on the new set of variables (i.e. the single ones and the two new synthetic variables (groupD

\[
\text{Number of vessels in } 1^{\text{st}} \text{ quartile} \quad \text{4th quartile}
\]

\[
\text{Total number of vessels}
\]
and groupC) represented by their first PC showed that 75.4% of the total variance was taken into account by the first three PCs (35.3, 24.1 and 16.1% of the whole variance, respectively; Fig. 4). PC1 was mainly explained by hydraulic efficiency variables at both anatomical (groupD) and hydraulic (groupC) levels, which were negatively correlated with vessel density. PC2 was mainly explained by hydraulic safety variables (P_{30} and slope). PC3 was mainly explained by the single variable pith area (Table 4). Although there was a large distribution of genotypes within the space of PC1–PC2 (Fig. 4; PC1 versus PC2), only two genotypes (‘106’, ‘41’) belonged to both the upper quartile of PC1, meaning high efficiency, and to the lower quartile of PC2, meaning high safety.

QTL detection for anatomical and hydraulic traits

QTLs were detected for all heritable traits except the P_{30} variable. In the following paragraph, description of the QTLs will be divided in three groups of variables depending on QTL co-localizations.

In the first group of variables, which includes wood area, vessel number, wood area proportion, vessel area, bottom diameter, top diameter, K_h and K_s, one major QTL was detected on LG08 and explained between 17.9 and 22.9% of the variability (Table 5; Fig. 5). For vessel number and K_h, the QTL was characterized mainly by a female additive effect. For the variables wood area proportion, vessel area and K_s, the QTL was characterized by both a female and a male additive effect. Finally, for wood area, bottom diameter and top diameter, the LG08 QTL displayed both a female and dominance effect.

The second group of variables included proportion of small vessels, proportion of large vessels and D_h. All three variables were characterized by the identification of QTLs on LG08 and LG11. One additional QTL was also identified for D_h and was located on LG13. For proportion of small vessels, the QTL detected on LG08 explained 13.3% of the variability, and was characterized by both a female and dominance effect. The QTL identified on LG11 explained 12% of the variability and was mostly characterized by a female additive effect. The global model estimation showed significant effect for both QTLs, with no interaction between them, and explained 19.1% of the variability. For the variable proportion of large vessels, the QTL identified on LG08 and LG11 explained 16.2 and 11.3% of the variability, respectively. Both QTLs were characterized by a female and a dominance effect. The global model built for these two QTLs confirmed the significance of the markers, which together explained 18.9% of the trait variability. Finally, the three QTLs identified for D_h on LG08, LG11 and LG13 explained 20.1, 11.2 and 9.7% of the variability, respectively. QTLs identified on LG08 and LG13 displayed a strong male additive effect, while the QTL located on LG11 resulted from a female additive effect. The global model built for this variable explained 33.2% of the variability.

The last group is composed by the variables slope, pith area and vessel density. QTLs detected for these variables did not co-locate with any of the genomic regions previously identified, and among each other. One QTL located on LG02 and explaining 30.4% of the variability was identified for the variable slope. This QTL was characterized by a dominance effect. For the variable pith area, one QTL was also detected on LG02, but was located in a different zone than the one for slope. This QTL explained 23.2% of the variability.

\[\text{Table 3. Correlations between original variables measured on the ‘Starkrimson’ × ‘Granny Smith’ apple progeny and the first principal component of the principal component analysis (PCA) carried out within each group of clustered variables (i.e. the two synthetic variables groupD and groupC)} \]

<table>
<thead>
<tr>
<th></th>
<th>GroupD</th>
<th>GroupC</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_h</td>
<td>0.97</td>
<td>–</td>
</tr>
<tr>
<td>PVQ1</td>
<td>0.95</td>
<td>–</td>
</tr>
<tr>
<td>PVQ4</td>
<td>0.99</td>
<td>–</td>
</tr>
<tr>
<td>K_h</td>
<td>–</td>
<td>0.89</td>
</tr>
<tr>
<td>K_s</td>
<td>–</td>
<td>0.93</td>
</tr>
<tr>
<td>BD</td>
<td>–</td>
<td>0.77</td>
</tr>
<tr>
<td>TD</td>
<td>–</td>
<td>0.82</td>
</tr>
<tr>
<td>VN</td>
<td>–</td>
<td>0.95</td>
</tr>
<tr>
<td>VA</td>
<td>–</td>
<td>0.97</td>
</tr>
<tr>
<td>WA</td>
<td>–</td>
<td>0.97</td>
</tr>
<tr>
<td>WAprop</td>
<td>–</td>
<td>0.77</td>
</tr>
</tbody>
</table>

© 2011 Blackwell Publishing Ltd, Plant, Cell and Environment, 34, 1276–1290
Figure 4. Scattergram of principal components 1 (PC1) and 2 (PC2), and 2 (PC2) and 3 (PC3), with projections of the variables (left) and genotypes (right) for variables investigated in the ‘Starkrimson’ × ‘Granny Smith’ apple progeny. On PC1 axis, efficiency (high conductivity and correlated variables) increases from left to right. On PC2 axis, safety (high absolute values of P_{50}) increases from top to bottom. On PC3 axis, pith area increases from bottom to top. In projection of the variables, black and grey symbols indicate variables with a high versus a low link with PC1 and PC2 in ‘PC1 versus PC2’ graph, and with PC3 in ‘PC2 versus PC3’ graph, respectively (see Table 4). In projection of the genotypes, large bold numbers are for the two genotypes (‘41’, ‘106’) with values in the highest (high efficiency on PC1) and lowest (high safety on PC2) quartiles of all genotypes. GroupD includes the variables: proportion of small vessels, proportion of large vessels and D_{v}. GroupC includes the variables: bottom diameter, top diameter, vessel number, vessel area, wood area, wood area proportion, K_{w} and K_{c}.
Table 4. Loadings of the variables measured on the 'Starkrimson' × 'Granny Smith' apple progeny, P_{50}, slope (SL), pith area (PA), vessel density (VD), and clusters of variables groupD (proportion of small vessels, proportion of large vessels, D_h) and groupC (bottom diameter, top diameter, vessel number, vessel area, wood area, wood area proportion, K_w, K_a), on the three principal components, PC1, PC2 and PC3 of the principal component analysis (PCA) in Fig. 4

<table>
<thead>
<tr>
<th>Trait</th>
<th>LG</th>
<th>Position (cM)</th>
<th>Locus</th>
<th>LOD</th>
<th>LOD max</th>
<th>LM p</th>
<th>R^2</th>
<th>Global R^2</th>
<th>A_m</th>
<th>A_f</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>WA</td>
<td>8</td>
<td>35.2</td>
<td>MdPI</td>
<td>4.61</td>
<td>4.68</td>
<td>0.224</td>
<td>5.7 10^-5</td>
<td>7.5 10^-5</td>
<td>-7.3 10^-5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VN</td>
<td>8</td>
<td>35.2</td>
<td>MdPI</td>
<td>4.01</td>
<td>0.193</td>
<td>271.98</td>
<td>318.96</td>
<td>-268.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waprop</td>
<td>8</td>
<td>35.2</td>
<td>MdPI</td>
<td>3.56</td>
<td>3.69</td>
<td>0.183</td>
<td>-0.077</td>
<td>0.078</td>
<td>-0.057</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA</td>
<td>8</td>
<td>35.2</td>
<td>MdPI</td>
<td>4.53</td>
<td>0.216</td>
<td>-84027</td>
<td>89351</td>
<td>-5314</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BD</td>
<td>8</td>
<td>35.2</td>
<td>MdPI</td>
<td>3.61</td>
<td>0.189</td>
<td>-0.287</td>
<td>0.798</td>
<td>-0.893</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TD</td>
<td>8</td>
<td>35.2</td>
<td>MdPI</td>
<td>2.74</td>
<td>0.185</td>
<td>-0.176</td>
<td>0.298</td>
<td>-0.326</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_h</td>
<td>8</td>
<td>35.2</td>
<td>MdPI</td>
<td>3.12</td>
<td>0.179</td>
<td>-0.071</td>
<td>0.137</td>
<td>-0.061</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_b</td>
<td>8</td>
<td>35.2</td>
<td>MdPI</td>
<td>4.54</td>
<td>0.229</td>
<td>-0.063</td>
<td>0.067</td>
<td>-0.032</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVQ1</td>
<td>11</td>
<td>0</td>
<td>ch04h02</td>
<td>2.99</td>
<td>**</td>
<td>0.120</td>
<td>0.191</td>
<td>3.436</td>
<td>6.968</td>
<td>4.481</td>
<td></td>
</tr>
<tr>
<td>PVQ4</td>
<td>8</td>
<td>19.4</td>
<td>Hi04b12</td>
<td>2.91</td>
<td>*</td>
<td>0.133</td>
<td>3.330</td>
<td>4.907</td>
<td>5.780</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_h</td>
<td>8</td>
<td>35.2</td>
<td>MdPI</td>
<td>3.15</td>
<td>3.38</td>
<td>0.162</td>
<td>-6.549</td>
<td>8.474</td>
<td>-8.047</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SL</td>
<td>2</td>
<td>71</td>
<td>ch03d01</td>
<td>3.51</td>
<td>3.58</td>
<td>0.304</td>
<td>4.937</td>
<td>0.233</td>
<td>-9.695</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA</td>
<td>2</td>
<td>49.9</td>
<td>ch02c06</td>
<td>4.29</td>
<td>0.232</td>
<td>1.8 10^-5</td>
<td>2.9 10^-5</td>
<td>4.4 10^-5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VD</td>
<td>9</td>
<td>0</td>
<td>NH029</td>
<td>3.6</td>
<td>0.228</td>
<td>-8.9 10^-6</td>
<td>6.3 10^-5</td>
<td>1.5 10^-5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For each trait is described, the linkage group (LG) where the QTL was identified, position on the map, name of the closest locus to the logitam of the odds (LOD) pick, LOD value, significance of the marker used in the construction of the linear model (LM p), variability explained by the QTL (R^2), global variability explained by all the QTLs detected for one trait (global R^2), male (A_m) and female (A_f) additive effects, and dominance (D) effects.

For a given principal component, value(s) in bold indicate(s) variable(s) or cluster(s) of variables defining mainly this principal component.

variability and was characterized by a dominance effect. Finally, one QTL explaining 22.8% of the variability and characterized by a dominance effect was detected on LG09 for the variable vessel density.

DISCUSSION

Interests and limits of the present study

Our study aimed at analyzing how several variables characterizing stem morphology, stem and wood anatomy, and stem xylem efficiency and safety were segregating within an apple progeny. The focus was on the correlations between these sets of variables with an insight on their genetic determination through a QTL analysis. Although the ecological and agronomic interest of hydraulic studies is repeatedly pinpointed (Cochard et al. 2008), this challenging issue is poorly documented on horticultural perennials. Combining these various approaches was tedious and time consuming, especially for measuring VCs even though the Cochard cavitation is recognized as one of the fastest method (Cai et al. 2010). In the two alternatives of our Cornelian dilemma (i.e. whether increasing the number of genotypes to the detriment of the number of repetitions or the reverse), our objective was to get an insight into the variability of trait values across as many genotypes as possible with only a single tree per genotype. The studied variables also imposed sampling constraints related to the technique used. This was the case here for the study of cavitation for which the use of the Cavitron spinning technique imposed a minimum length of stem (Cochard et al. 2010). Based on preliminary studies (Cochard, unpublished results) the choice was made to work on 36-cm-long stems. The same stem length was then applied to the hydraulic conductivity analyses (HPFM). There is new evidence that stem length changes the VCs, as well as hydraulic conductivity as measured with both centrifugation and air injection techniques (Cruiziat et al. 2002; Choat et al. 2010; Cochard et al. 2010; Ennajeh et al. 2011). Our further comments will then be restricted to this stem-length category bearing in mind that, in certain cases this may not be representative of the genotype.
architecture, especially for genotypes with a high frequency of short shoots (Segura et al. 2006).

Variability of hydraulic efficiency and anatomical traits

The broad sense heritability values of almost all investigated traits obtained in our apple progeny (0.58–0.81; Table 1) were above the range of heritabilities generally encountered in natural populations (i.e. 0.2–0.5) (Walsh 2001), and to values obtained for architectural and morphological traits on the same progeny (0.55–0.68 with lower limits of CIs from 0.36–0.54; Segura et al. 2007). In a previous study on Norway spruce clones, Rosner et al. (2007) pointed the low heritability of hydraulic safety traits. Although, in our case, the heritability values were likely biased upward because of the use of a single tree per genotype and a single environment (Scully, Wallace & Viands 1991), the high values we obtained are worth noticing and would surely need confirmation integrating experiments on several trees per genotype and ideally various environments.

The apple wood is diffuse porous composed of homogeneous narrow vessels (Pratt 1990) having a more progressive embolism compared to ring-porous species with large vessels and characterized by drastic increase in embolism, especially freezing-induced cavitation (Cochard 2006). We were not able to classify the apple genotypes in one of the diffuse-porous wood types (d1, d2) defined by Umebayashi et al. (2010), because the water-conducting patterns in early and late wood were not considered in our study. However, the mean value of the hydraulic diameter (D_h) we found (i.e. 18.9 mm) was quite similar to the lower limit shown by these authors on a range of diffuse-porous wood broad-leaved species. Similarly, the mean value of hydraulic conductivity (K_h) (i.e. 0.26 mmol s$^{-1}$ MPa$^{-1}$ m) was similar, after unit transformation, to the mean value for current-year long shoots of the deciduous broad-leaved species *Fagus sylvester* (Cruiziat et al. 2002). When K_h was expressed as a ratio to total vessel area [i.e. hydraulic specific conductivity (K_{hs})], it did not vary consistently across the apple genotypes studied here, falling in the range of values established by Tyree & Zimmermann (2002) for angiosperms. The fact that K_{hs} had a low heritability, and

Figure 5. Genomic position of quantitative trait loci (QTLs) detected on the linkage groups of the integrated ‘Starkrimson’ ¥ ‘Granny Smith’ map by multiple QTL mapping (MQM). QTLs are represented by boxes extended by lines representing the logarithm of the odds (LOD)-1 and LOD-2 confidence intervals (CIs). Variables from group C (bottom diameter, wood area proportion, top diameter, K_h, K_{ht}, vessel area, wood area, vessel number) are in hashed boxes, variables from group D (proportion of small vessels, proportion of large vessels, D_h) are in black boxes and other independent variables (slope, pith area and vessel density) are in white boxes. Numbering of the linkage groups (LG) is according to Maliepaard et al. (1998).
that it did not take into account the variability of vessel size highly related to vessel conductivity (see below) would question the interest of this variable to discriminate between genotypes, at least at the intra-species level with same wood characteristics.

The mean value of P_{50} (i.e. -4.3 MPa) (Table 1) was between the ranges observed in two extreme genus, the highly resilient *Callitris* trees (-9 to -15; Brodribb *et al.* 2010) and the highly vulnerable to drought-induced cavitation *Populus* (-1.60 to -2.40 MPa; Fichot *et al.* 2010). Our results were similar to the values obtained on *Prunus* species by Cochard *et al.* 2008 (-3.5 to -6.5), and also on various species belonging to the drought deciduous shrubs group by Maherali *et al.* (2004). On the other hand, the mean value of the slope of the VC (i.e. 23.2% MPa) (Table 1) was well under the range of values found by Cochard *et al.* (2008) on the *Prunus* species (i.e. 35.05% MPa), meaning that the progression of embolism within the stem was much lower in our apple progeny compared to the studied *Prunus* species. All together, the P_{50} and slope values obtained across the whole apple progeny are in accordance with the known ability of the apple tree among other fruit tree species to adapt to various environments, especially dry conditions (Webster 2005).

Phenotypic correlations between traits

The phenotypic correlations between traits clearly highlighted the major positive contribution of the proportion of large vessels to D_{hs} and to K_{hs} and K_{hs} (Table 3), confirming previous works (Tyree & Sperry 1989; Steppe & Lemeur 2007; Russo *et al.* 2010). Although not investigated here, it is likely that vessel diameter per se can be used as a proxy for the whole tree growth potential (Tombesi *et al.* 2010). Our study clearly showed that genotypes with large wood area, and to a lesser extent large-diameter stems (bottom diameter, top diameter), not only had more vessels (positive correlation with vessel number), but also had a higher proportion of large vessels to the detriment of narrow ones (negative correlation with the proportion of small vessels). Whether these patterns of wood area–vessel area relationships are related to a genotype-dependent secondary growth duration remains to be further documented. The inverse relationship between vessel area and vessel density shown here at the intra-species level (vessel density positively correlated with the proportion of small vessels and negatively with the proportion of large vessels) was also found on a range of woody species belonging to several families, genera and species (Russo *et al.* 2010). Although not investigated here, it is likely that this trade-off between hydraulic efficiency and vessel density is correlated to mechanical stability of the xylem (Sellin *et al.* 2008). Eventually, the good correlation of the highly heritable wood area with all other more arduous to measure efficiency traits strongly supports the interest of wood area as the easiest-to-measure trait, among all traits considered here, to estimate water transport efficiency of a genotype.

The theoretical hydraulic conductivity (K_{ht}) calculated from Poiseuille equation for ideal capillaries of circle stem cross-section underestimated the hydraulic conductivity (K_{ht}) measured with the HPFM apparatus by a factor of 2.35 (data not shown). As documented (e.g. Tyree & Zimmermann 2002), measured conductivity is generally lower than theoretical conductivity, which is contrary to what we observed here. In our results, a unique ratio accounted for differences between the two variables across all genotypes, suggesting that the same bias analysis was applied to all slides leading to a proportional increase of measuring error with K_{ht} (i.e. with vessel area increase). This may be explained in two not excluding ways. It would first pinpoint the fact that the calculation of theoretical hydraulic conductivity does not include resistivity caused by pits which in certain cases may strongly decrease actual xylem conductivity. Second, it questions the methodology used in our study as routine thresholding for counting and measuring vessel lumens, for both colour (eliminating light and dark blue pixels) and area (with the choice of a minimal threshold of 10 pixel2, i.e. $21.5 \mu m^2$). This eliminated not only the narrowest vessels (less than $21.5 \mu m^2$), but also decreased the area of all the vessels eliminating pixels near the cell wall (light blue).

Hydraulic safety versus efficiency and anatomical traits

The PCA analysis clearly discriminated anatomical and hydraulic traits related to xylem hydraulic efficiency (PC1) from safety hydraulic traits (PC2) (Fig. 4). As a whole, these two non-correlated axes confirmed previous works showing that macroscopic anatomical traits, such as vessel diameter or vessel density, were not involved in hydraulic safety (Tyree & Zimmermann 2002). More precisely, as concerns the safety axis, the fact that the slope of the VC was positively correlated with P_{50} illustrated that the faster the progression of embolism (steep slope), the lower the tension (in negative values) to induce cavitation. In other words, genotypes with high vulnerability to cavitation also had a fast spreading of embolism. This result confirms previous trends on stems of *Prunus* (Cochard *et al.* 2008), and more recent results on stems of various conifer species (Delzon *et al.* 2010) and on individual vessels of *Populus tremuloides* (Cai & Tyree 2010).

Principal component 3 (PC3) was composed of pith area only, indicating that this variable was poorly correlated to all other variables (Fig. 4). The negative correlation with the proportion of wood area among wood and pith area on the one hand, and the positive correlation with top stem diameter without any correlation with bottom stem diameter on the other hand (Table 2), would agree with the hypothesis of a rather constant pith area along the annual stem. Indeed, as shown by Marcelis-van Acker (1994) on rose shoots, there is a positive relationship between pith diameter and stem diameter during the first 3 weeks after the beginning of shoot development, with no more pith area increment thereafter. This is related to the fact that pith is
formed in the sub-apical region of the stem with almost no cell division later on (Marcelis-van Acker 1994; Ripetti et al. 2008). This growth pattern results in a progressive decoupling of pith and wood area increments from the top of the stem downwards. Apart from the known water-storing role of pith (Rosell & Olson 2007), it is likely that this phenomenon parallels the contribution of pith to stem mechanical properties. Indeed, pith has a significant mechanical contribution [i.e. modulus of elasticity (MOE) and modulus of rupture (MOR)] on the young stem and almost no contribution on the old stem (Lundström et al. 2007). A consequence of our results is that although pith constitutes a reliable marker for primary growth of trees, especially indicating the limits between consecutive annual shoots (Longuét-Hall & Caraglio 2009), its interest as a morphological marker of stem girth and any variable related to hydraulic efficiency and safety does not hold true.

As well documented for annuals, the genetic improvement of yield should be conceived together with the improvement of growth conditions and plant management (Maherali et al. 2008; Kirkegaard & Hunt 2010). Applied to the apple, a main aspect of the hydraulic balance of the tree depends on the characteristics of, and the relationships between, the two genetic parts that usually compose the tree. Indeed, the cultivated apple tree is a composite entity consisting of a scion variety selected for fruit quality grafted upon a rootstock variety selected for its aptitude to control tree size and also for its adaptation to soil abiotic (e.g. drought) and biotic (e.g. telluric pathogens and pests) conditions. How the intrinsic anatomical and hydraulic characteristics of a genotype, such as the ones analysed in the present study, interact with those of another genotype, the rootstock, needs further studies, including the specific aspect of the impact of the graft union on plant hydraulics which has already been well documented (e.g. Solari, Johnson & Dejong 2006a, b; Vanderklein et al. 2007).

Quantitative trait co-localization

Results from the QTL analysis in the ‘Starkrimson’ × ‘Granny Smith’ population were in concordance with clustering and PCA. We have shown that variables displaying strong phenotypic correlation might also be regulated by similar genetic determinants confirming previous statements by Chen & Hübberstedt (2010). The only exception was P_{50}. Although slope and P_{50} were positively correlated, no QTL was detected for the latter one, whereas there was one detected for the former. This non-identification of common major QTLs between the two correlated variables might be caused by the low number of progenies used for the QTL analysis. Thus, minor and moderate common QTLs might still be present within the genome which could constitute other sources of genetic variation to be explored.

The middle section of LG08 had already been identified as controlling a wide range of traits in the ‘Starkrimson’ × ‘Granny Smith’ population studied here. QTLs were identified in this region for the biennial-bearing index, total number of inflorescences, fruit cumulative yield (Guitton et al., submitted), some leaf ecophysiological traits such as transpiration rates and stomatal conductance (Regnard et al. 2009), as well as phenological traits such as the date of flowering and budbreak (Celton et al., submitted). Co-localization of QTLs for these variables could be explained by an increased capacity of the plant to transport water, carbohydrates and sugar to the growing organs. Thus, variables, such as fruit yield and resistance to water stress, are likely to interact with the xylem hydraulic performance in terms of both efficiency and safety.

The similar QTL location identified for the various variables might be explained by a pleiotropic QTL, or by clustering of functionally related genes (Cai & Morishima 2002). In maize, it has been shown that QTLs and genes for growth or development are distributed non-randomly in gene clusters along the chromosomes (Khavkin & Coe 1997). Gene clustering has already been reported in apple for various traits such as resistance to pathogens (Xu & Korban 2002; Baldi et al. 2004) and allergens (Gao et al. 2005). However, considering our limited population size, we cannot discriminate between linked QTL and a pleiotropic QTL.

The final conclusion of this study is that based on the anatomical and hydraulic variables we considered here, there were no phenotypic correlations between hydraulic efficiency and hydraulic safety. This result was confirmed by the absence of common genomic regions for these two groups of variables. These findings extend to the intraspecific level: more precisely within a single progeny of 90 apple genotypes, there is no trade-off between the two groups of variables. This is consistent with the air-seeding hypothesis, not explored here, as a main mechanism of cavitation (Wheeler et al. 2005; Chat et al. 2008). In a breeding perspective, the absence of correlation, at least linear, between safety and hydraulic efficiency traits (i.e. each group of traits belonging to a distinct principal component in the PCA) and the distinct QTLs detected for each group of traits suggest that it might be possible to find recombinants that would combine both characteristics. Indeed, a specificity of horticultural plants is that they have to optimally combine xylem hydraulic efficiency to ensure sufficient vegetative growth to support regular fruit production, and xylem safety – including embolism reversal as discussed by Koch & Sillett (2009) in the context of hydraulic failure in tall trees – to ensure water transport from roots to leaves avoiding as much as possible deleterious effects of drought periods. Only two genotypes out of 90 were able to combine both an efficient and a safe xylem vascular system (‘41’ and ‘106’; Fig. 4 PC1 versus PC2). Selecting new genotypes combining safety and hydraulic efficiency will thus require further screening of crossed materials with wider genetic backgrounds of the parents and larger population sizes. Although our results on individual stems have to be confirmed at the whole-tree level, they raise the question of the underlying mechanisms of anatomical and hydraulic traits at genetic, physiological and morphological levels. Eventually, xylem safety is only one aspect of plant adaptation to drought. The coupling between xylem characteristics as
investigated here and leaf traits, such as stomatal conductance (Cruiziat et al. 2002; Fichot et al. 2010), should be the next step to furthering the characterization of the global performance of these apple genotypes in drought-prone environments, especially if one wants to consider the isohydric versus anisohydric or near-isohydric behaviour of the genotypes (Jones 2007; Chaves et al. 2010).

ACKNOWLEDGMENTS

We thank Gilbert Garcia and Stéphane Feral for taking care of the trees in the field, André Clément-Demange for helpful discussions on heritability and two anonymous reviewers for helpful comments on the first version of the manuscript.

REFERENCES

© 2011 Blackwell Publishing Ltd, Plant, Cell and Environment, 34, 1276–1290

Solari L.I., Johnson S. & Dejong T.M. (2006b) Hydraulic conductance characteristics of peach (Prunus persica) trees on different rootstocks are related to biomass production and distribution. Tree Physiology 26, 1343–1350.

Received 20 December 2010; received in revised form 25 February 2011; accepted for publication 22 March 2011

© 2011 Blackwell Publishing Ltd, Plant, Cell and Environment, 34, 1276–1290